Inverse spectral results for Schrödinger operators on the unit interval with partial informations given on the potentials

نویسندگان

  • L. Amour
  • J. Faupin
  • T. Raoux
چکیده

We pursue the analysis of the Schrödinger operator on the unit interval in inverse spectral theory initiated in [AR]. Whereas the potentials in [AR] belong to L with their difference in L (1 ≤ p < ∞) we consider here potentials in W k,1 spaces having their difference in W k,p where 1 ≤ p ≤ +∞, k ∈ {0, 1, 2}. It is proved that two potentials in W ([0, 1]) being equal on [a, 1] are also equal on [0, 1] if their difference belongs to W ([0, a]) and if the number of their common eigenvalues is sufficiently high. Naturally, this number decreases as the parameter a decreases and as the parameters k and p are increasing. ∗Laboratoire de Mathématiques EDPPM, FRE-CNRS 3111, Université de Reims Champagne-Ardenne, Moulin de la Housse, BP 1039, 51687 REIMS Cedex 2, France. [email protected] †Institut de Mathématiques de Bordeaux, UMR-CNRS 5251, Université de Bordeaux 1, 351 cours de la libération, 33405 Talence Cedex, France. [email protected] ‡Laboratoire de Mathématiques EDPPM, FRE-CNRS 3111, Université de Reims Champagne-Ardenne, Moulin de la Housse, BP 1039, 51687 REIMS Cedex 2, France. [email protected] 1 ha l-0 03 85 83 8, v er si on 1 20 M ay 2 00 9 Author manuscript, published in "Journal of Mathematical Physics 50 (2009) 033505" DOI : 10.1063/1.3087426

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse spectral problems for Sturm-Liouville operators with transmission conditions

Abstract: This paper deals with the boundary value problem involving the differential equation                      -y''+q(x)y=lambda y                                 subject to the standard boundary conditions along with the following discontinuity conditions at a point              y(a+0)=a1y(a-0),    y'(a+0)=a2y'(a-0)+a3y(a-0).  We develop the Hochestadt-Lieberman’s result for Sturm-Lio...

متن کامل

Negations and aggregation operators based on a new hesitant fuzzy partial ordering

Based on a new hesitant fuzzy partial ordering proposed by Garmendia et al.~cite{GaCa:Pohfs}, in this paper a fuzzy disjunction ${D}$ on the set ${H}$ of finite and nonempty subsets of the unit interval and a t-conorm ${S}$ on the set $bar{{B}}$ of equivalence class on the set of finite bags of unit interval based on this partial ordering are introduced respectively. Then, hesitant fuzzy negati...

متن کامل

Inverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions

In this paper, we study the inverse problem for Dirac differential operators with  discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...

متن کامل

Inverse uniqueness results for Schrödinger operators using de Branges theory

We utilize the theory of de Branges spaces to show when certain Schrödinger operators with strongly singular potentials are uniquely determined by their associated spectral measure. The results are applied to obtain an inverse uniqueness theorem for perturbed spherical Schrödinger operators.

متن کامل

Uniqueness Theorems in Inverse Spectral Theory for One-dimensional Schrödinger Operators

New unique characterization results for the potential V (x) in connection with Schrödinger operators on R and on the half-line [0,∞) are proven in terms of appropriate Krein spectral shift functions. Particular results obtained include a generalization of a well-known uniqueness theorem of Borg and Marchenko for Schrödinger operators on the half-line with purely discrete spectra to arbitrary sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009